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Applications and time-domain solution of higher-order parabolic

equations in underwater acoustics

Michael D. Collins®

Naval Ocean Research and Development Activity, Stennis Space Center, Mississippi 39529

(Received 9 February 1989; accepted for publication 19 May 1989)

A higher-order paraholic equation and the corresponding higher-order time-domain parabolic
equation are derived from a Padé series and solved numerically. These models provide accurate
solutions for problems involving very-wide-angle propagation (e.g., propagation in the
nearfield or over a hard ocean bottom); propagation in domains in which sound-speed
variations are large (e.g., propagation in deep water, deep within the ocean bottom, in high-
speed ocean bottoms, and possibly ../ different wave types); and propagation out to very long
ranges. The possibility of modeling elastic wave propagation with a similar approach is

constdered.

PACS numbers: 43.30.Bp, 43.20.Bi

INTRODUCTION

The paraholic equation (PE) has undergone extensive
development since it was first applied to underwater acous-
tics' including improvements in accuracy and implementa-
tion in the time domain. The phase errors of PE solutions,
which approximate the solution of the wave equation, were
reduced significantly with the introduction of the wide-angle
PE.” Although various generalizations of the wide-angle
PE have been considered,”™’ the aperture limitation of the
PE has remained an issue of concern. The time-domain para-
bolic equation (TDPE)®*'? allows one to perform pulse
propagation calculations without Fourier synthesis. The
TDPE has been extended to handle interface conditions,”
nonlinear propagation, ' density variations and sediment at-
tenuation,'' and wide-angle diffraction and sediment disper-
sion.'?

In this article, a higher-order PE based on a Padé series’
is shown to provide solutions comparable in accuracy to nor-
mal-mode solutions for problems involving very-wide-angle
propagation, large variations in sound speed, and propaga-
tion out to long range. Since the Padé series is composed of
rational linear terms, the higher-order PE is easy to solve
numerically. The corresponding higher-order TDPE is
solved numerically and compared with a wide-angle TDPE
designed for propagation in shallow water." The possibility
of applying the Padé series to derive a PE for elastic wave
propagation is investigated.

I. THE HIGHER-ORDER PE

A time-harmonic steady state is assumed, and the
acoustic pressure p is factored as p(x,1) = P(x)exp( — iwt),
where ¢ is time, x is the Cartesian position vector, and « is the
circular frequency. The complex pressure P is assumed to
satisfy the pressure-release boundary condition P = 0 at the
ocean surface, the outgoing radiation condition at infinity,
and the reduced wave equation

pV-[(1/p)VP] + K*P= — 478(x — x,), ("

" Present address: Naval Research Laboratory, Washington, DC 20375,
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where the point x,, is the source location. The complex wave-
number X = & + {yf3 1k |isused toaccount for sediment lose.
The wavenumber is k = w/c, n = (407 log,,, e) "', Bis the
attenuation in decibels per wavelength (dB/4), p is the den-
sity, and ¢ is the sound speed.

We assume that variations in azimuth are negligible and
solve Eq. (1) in cylindrical coordinates, with z being the
depth below the ocean surface and r being the horizontal
distance from a source at the depth z,. Vanations in range
are assumed to be sufficiently weak so that dp/dr can be
ignored, which simplifies Eq. (1) to

__a&f__!__gﬂg a-f+i_a£+](2p
dz p Fk Jz I r ar
= — (2/r)6(r)b(z — z,). 2)

We define Q = /7P, and for r> 0 Eq. (2) becomes

3’0 1330 30 0
= - ——— =4+ =4+ =4+KQ=0.
oz p 8z dz I 4~ Q
We assume that 7> r,, where kr,> 1, and drop the O(r~?)

term in Eq. (3) to obtain the farfield equation
3'Q 1 o 3Q 3°Q .
—_— —— =4 —=4+K0Q0=0. 4)
dz2  p dz dz Or 0
For range-independent domains, Eq. (4) factors exactly to

KT+l
a—Q=ik(,\/1+————+ 0 (5)

(3)

~
ar kaq
where ¢, is a reference sound speed, &, = w/c,, and

BN (6)

Equation (5), which we refer to as PE | , is an accurate ap-
proximation for many range-dependent problems in under-
water acoustics and can be solved in terms of outgoing cou-
pled modes."*

PE derivations are based on approximations of the func-

tion 1 & x 1 éarivi 21 ench as the Taylor series

Vidx —l=lx— x4 txt— e (7
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If K =k, the first term of this series and the approximation

(K™ — k) 2ko=k —k,+inB|k| (8)
give the narrow-angle PE
. iL
Uitk —kpu-mpikiv+-L g, (9)
or Ky,

where Q = Uexp(ik,r). The terms on the right side of Eq.
(9) (from left to right) are: the refraction term, which ac-
counts for variations in sound speed; the loss term, which
accounts for sediment attenuation; and the diffraction term,
which accounts for the vertical component of propagation. '”

The first two terms of the Taylor series have been used to
derive a wide-angle PE.* However, the higher-order PE's
based on the Taylor series are relatively inefficient. Since the
Taylor series diverges for {x| > 1, many terms in the series
are required for problems involving large differences in
sound speed or very-wide-angle propagation. Furthermore,
higher-order PE’s based on the Taylor series are difficult to
implement because x is raised to powers, which results in
operators raised to powers.

The widc-angle PL is bascd on a .ational linear Padé
approximation. A generalization of the wide-angle PE that is
based on a ratio of polynomials® is difficult to implement
because powers of x are involved. A generalization of the
wide-angle PE that involves only first powers is based on the
following Padé series™:

" a h'e

x—1=5 —2 0o, (10)
;1 1 + b’."X

where 1 is the number of terms in the Padé expansion and

a, =[2/2n+ Dsin’[ ja/2n + 1], (1)

b,, =cos’[ja/(2n+ 1)) (12)

Since the Padé series is valid outside the radius of con-
vergence of the Taylor series, relatively few terms are needed
for (x| = 1. We illustrate this in Table [. The four-term Tay-
lor series is better than the one-term Padé series for x < 1, but
the one-term Padé series s better for x > 1. The two-term
Padé series and the four-term Taylor series are both correct
to O(x*) for small x. Yet the two-term Padé series is substan-
tially better than the four-term Taylor series. The three-term

TABLE I. Comparison of Taylor and Padé¢ series.

Four-term  One-term Two-term Three-term

x Taylor Pade Padé Pade V4 x -]
0.25 011501 117 65 011803 011803 0.11803
0.50 022412 022222 0.224 72 0.224 74 0.224 74
(.75 GIMRT0 0 031579 032274 032237 032283
1.00 ().39R8 44 1.400 00 041379 (0.414 20 (0.414 21
1.28 0,456 39 0.476 19 0.499 04 (1.499 96 0.500 00
1.50 (1481 93 0.545 45 .879 3) (1.581 08 0.581 14
1.75 ().460 78 0.608 71} (1655 23 0.658 12 0.658 31
2.00 0.37500 (1.720 00 0.795 84 (1.802 21 0).802 78
2.50 008087 N T4 33 SRR D4 Chovud 0.BTORI
R UM 55 ).814 81 092376 0.935 19 0.936 49
1.00 i.101 56 (.RS7 14 0.983 61 ).998 17 [.O00 00
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Padé series is fairly accurate well beyond the radius of con-
vergence of the Taylor series near x = 3.
The Padé series gives the higher-order PE

v _ . 5:, a, (L+K>—k})
Ir S k4 b, (L+ K- kD)

which we refer to as PE, . Equation (13) can be solved with
the method of alternating directions. This approach involves
n steps with the jth step requiring the solution of the equation

U, (13)

[k +b,,(L+K k]
ar
=ikya,, (L+ K" —k;)U. (14)
We solve Eq. (14) by first discretizing depth dependence
with Galerkin's method as described in the Appendix. The
resulting system is then solved with Crank-Nicolson inte-
graiion.

A special version of PE| has been considered for appli-
cation in shallow water.'” Since sound-speed variations are
very smail in shallow water, a signal trapned in a shallow
ocean 1s influenced more by diffraction than refraction. The
shallow-water version of PE .

Witk kgt ekivs 5Ly (s

ar 4k, + L
is obtained from PE, by assuming that
[(K* — k§)U|<|LU]| in the water column. Equation (15)
has the same refraction term as Eq. (9) but an improved
diffraction term.

Toillustrate the ability of PE,, to handle long-range and
very-wide-angle propagation, we consider a waveguide 250
m thick with pressure-release top and bottom boundaries in
which ¢ = 1500 m/s. A 25-Hz point source is placed at
z=125 m, and we take ¢, = 1500 m/s. The eight normal
modes for this problem propagate at approximately 7, 14, 21,
29, 37, 46, 57, und 74 deg from horizontal. The PE, solu-
tions (initialized with the normal-mode solution at r = 0)
are compared with the normal-mode solution in Fig. 1. We
observe that the PE,, solutions break down very rapidly with
r for small n. However, the PE,, solution is nearly perfect at
r=4km.

We now consider a realistic example that illustrates an
application of PE, for low-frequency underwater acoustic
propagation in deep water. In the water column, we assume
the Munk sound-speed profile'*

-2z z—z,
c(z)zcc,{l+t[2 ‘"+ex<—2~—‘—"—)~l”.
1 f H p H

(16)
where u = 0.0071, c,, = 1500 m/s, z, = 1000 m, and

H = 1200 m. The ocean depth is 5000 m. In the sediment,
¢=1850m/s,p=1.5g/cm’, and § = 0.5 dB/A. A 10-Hz
point source is placed at z = 200 m, and we take ¢, = 1500
m/s. The homogeneous half-space field'* is used to initialize
the field at » == 400 m. The Lloyd’s mirror beams produced
by the source propagate at approximately 11, 34, and 70 deg.
PE, should accurately account for the 11- and 34-deg beams
for well beyond = 20 km. From the PE, and PE; solutions
appearing in Fig. 2, however, we observe that PE, cannot
handle the 70-deg beam, which is partially reflected from the
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FIG. 1. Transmission loss at z = 25 m for a 25-Hz source in a waveguide
with perfectly reflecting boundaries. The dashed curves are the normal
mode solution. The solid curves are the PE,, solutions for (2) n =2, (b)
n=4,and (c)n=6.

ocean bottom and makes a significant contribution to the
field for S km <r< 15 km.

Since the parabolic approximation is based on an expan-
sion about a reference wavenumber, it is not obvious that this
approximation cun be generalized to elastic media in which
waves of different speeds exist. To investigate ilic possibility
of generalizing PE, to handle solid ocean bottoms, we con-
sider a problem for which ¢ = 1500 m/s in the water and the
ocean depth is 200 m. In the fluid ocean bottom, ¢ = 1700
m/s, p= 15 g/cm’, .ad B 05 GB/2 A SN.Hz paint
source is placed at z = 25 m. The PE, solution for ¢, = 1500
m/s and the PE . solution for ¢, = 300 m/s appear in Fig. 3.
The agreement of the solutions suggests that a higher-order
elastic PE based on the Padé series would handle both
compressional and shear waves simultaneously.
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FIG. 2. Transmission loss at z = 200 m for a 10-Hz source tn deep water.
The dasied curve is the PE, solution. The solid curve is the PE, solution.

Il. THE HIGHER-ORDER TDPE

Just as refraction is less important than diffraction for a
signal trapped in shallow water, the effects of attenuation
and dispersion are less important than refraction and dif-
fraction for niust problems. Thus we do not derive correc-
tions for the attenuation/dispersion operator in the TDPE of
Ref. 12. We assume that K is real (no attenuation) and that ¢
is independent of  (no dispersion) in the analysis and write
Eq. (13) as

n 2 ”’L
Wiy $ W thety, a7
ar S yaot+ 6, L
where
a
aj." = 2 (iw_i,)y (]8)
Cy \C” Cy
aj,n
ﬁj.n =, (19)
Co
1 1 1
'n=_+b.n T3 p (20)
T g (C' ca)
6],11 = bj.n' (2])

To obtain a higher-order TDPE that is easy to solve numeri-
cally, we write Eq. (17) in the form

40
= 50 ~
= WV
B I AA
ol 1Y T s
T AT 1’11 A
7 ‘ 1! J LI ViU A
Y] [ oy
e . | i oty
=070 i VY ol
| T
| 4
i \j §
an | 8 { - a
0 2 4 6 a8 10
Range (km)
FIG. 3. Transmission loss at 2 = 25 m for a 50-Hz source in shallow water.

The dashed curve is the PE, solution for ¢,
the PE, solution for ¢, 300 m/s.
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ﬂ —iw 5’: (a_’.l + ( ﬁ/.n - a/.u(s/.u/}"/vu )L)U (22)
N\

or TN Ym0 + 8, L
We define
u(rzty — f Utrzew)exp( — iot)dw (23)

and invert the Fourier transform in Eq. (22) to obtain the
higher-order TDPE:

du

g

ar / t },/. n

Q,,

(

+ ~ 7 - (24)

— ¥y, (d°/0t°) +6,,L
which we refer to as TDPE,, .

The alternating directions solution of TDPE,, requires

numerical solutions for each of the following # + 1 equa-

tions:

/j,,n - a/,n(s/.n/y/‘u V7 )a_u
at '

du ‘a,,\du
— — }— =0, (25)
(9)‘ (121 }’/J,) Bt
! 1)
AL g ( B. 5’——)L 9 126
ordt - ar Yo at

Since Eq. (25) is similar to the refraction term of the shal-
low-water TDPE, and Eq. (26) is similar to the diffraction
term of the shallow-water TDPE, the numerical solutions
developed in Ref. 12 can be modified slightly to obtain the
time-domain solution of Eq. (22). In contrast, the time-do-
main solution of Eq. (17) requires the numerical solution of
n equations similar to Eg. (26) as well as # third-order equa-
tions that are much more complicated than Eq. (25).

As in Ref. 12, the source function f(r) is assumed to
have compact support, and a time window f, <7 <1 that
contains the signal at all times is chosen. The boundary con-
dition 4 = 0 is imposed at the pressure-release surface, deep
within the sediment at z = z,, from which no energy veturns
to the water column due to attenuation, and after the signal
has passed the observer at ¢ = ¢,. The boundary conditions
u = du/dt = 0 are imposed before the signal is detected at
t = t,. Equation (25) is a first-order hyperbolic equation
that can be solved with the Lax-Wendroff scheme.'® Galer-
kin's method is used to discretize depth dependence in Eq.
(26) as described in the Appendix. The resulting equation is
then solved with Crank—Nicolson integration in 7 using cen-
tered differences in ¢ while sweeping from ¢ =1¢,tot =1,.

To demonstrate the ability of TDPE, to handle very-
wide-angle propagation, we consider a waveguide of thick-
ness 300 m with pressure-release top and bottom boundaries
in  which ¢=1500 m/s. The Gaussian source
Jtr)y = expl — (ve)*] is placed at z = 25 m, where v = 150
s ' The image solution, which is exact. 1s used to initialize
the field at r = 200 m, and we take ¢, = 1500 m/s. The
TDPE,, TDPE., and TDPE, solutions are compared with
the mace selution in Fig. 4. Each of the solutions is very
accurate for the first arrivals, which propagate at small an-
ole However. the agrecmant improves with n tor the later
arrivals, which propagate at larger angles.

In past studies of the TDPE, a stability condition for the
numerical solution of the refraction operator has been dis-
cussed. However, the numerical solution ot the diffraction
operator appeared to be unconditionally stable based on nu-
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TDPE  solutions.

merical results. While performing the calculations for the
previous example, however, we observed a new stability con-
dition involving the grid spacings Az and Ar. In a homoge-
ncous medium, the numerical solution of the diffraction op-
erator is unstable for Az = ¢,At and n> 1. The solution
appears to be stable for all n if Az > 4c,Ar. where numerical
experiments give 4=1.4.

'To demonstrate the ability of TDPE, to handle large
variations in sound speed. we consider an ocean of depth 400
m in which ¢ increases linearly from 1500 m/s at z=0to
1600 m/s at z =400 m. In the sediment, ¢ = 1700 m/s,
p = 1.5 g/em’, and 3= 0.5 dB/A. The Gaussian source
function with v = 150s 'is placed at 2 = 50 m, and we take
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¢, = 1500 m/s. The half-space field is used as an initial con-
dition at » = 100 m. The plane-wave loss operator of Ref. 12
is used to model attenuation. However, we have found that
greater accuracy is obtained by using ¢ rather than ¢, in the
loss operator. Sediment dispersion is neglected. The re-
sponse to f is convolved as in Ref. 12 to obtain the response
to a 50-Hz time-harmonic source. Transmission loss for the
TDPE,, PE,, naurrow-angle PE, and shallow-water PE, solu-
tions appears in Fig. 5. The narrow-angle PE solution has
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FIG. 5. Transnussion loss at 2 390 m for a 50-Hz source in a refracting
ocean. The dashed curves are the PE, solution. The solid curves are the (a)
narrow-angle PE, (h) shallow-water PE and (¢) TDPE, solutions.
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large phase errors. The shallow-water PE, solution is better,
but it too has a large error. The excellent agreement of the
TDPE, and PE, solutions demonstrates the ability of
TDPE, to accurately handle pulse propagation in deep wa-
ter and shows that the plane-wave loss operator is accurate
for this problem.

lIl. CONCLUSIONS

The phase error problem of the PE model has been com-
pletely eliminated. The higher-order PE based on a Padé
series handles problems involving very-wide-angle propaga-
tion, propagation in the nearfield, propagation out to long
range, and propagation in domains in which sound-speed
variations are large. Numerical results suggest that the ap-
proach might be useful for elastic wave propagation for
problems involving a superposition of compressional and
shear waves. The higher-order PE was solved in the time
domain, and a new stability condition was observed.
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APPENDIX: DEPTH DISCRETIZATION WITH
GALERKIN’S METHOD

Galerkin’s method is effective for discretizing the rela-
tively complicated depth operators in Eqs. (14) and (26),
which have coeflicient functions that may be discontinuous
and involve derivatives. The depth grid points are defined as
z, = iAz. The basis functions ¥, (z) vanish for {z — z,| > Az,
increase linearly fromOto 1 overz, . ; <z <z,, and decrease
from 1 toOoverz, <z<z,, ,. Wedefine u, (r,t) = u(rz,,t)
as well as O, = O(z,) and ¢, = P(z,) for arbitrary func-
tions ® and &. The basis functions provide the approxima-
tions

u(r,z,t)zZu,(r,t)\l/,(z), (Al)
CD(z)gZd),\l/,(z), (A2)
G)(z)gz(a,\l’,(z). (A3)

The following orthogonality condition is required to hold for
all £

3
orc

or
5
A</3M ~M)L ﬁ]dz:ol (Ad)
Yin ai

Equation (26) is discretized by substituting Eq. (A1) for
and Eqs. (A2) and (A3) for the coefficient functions into
Eq. (A4). The following approximations are obtained for
the depth operators:
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ou| qu@u | ©, ,+60,+0,., ©, +0 (AS)
P 12 : 12 12 b
®azu g&u ) 29, u ©. u (A6)
LR Y L -V R T VI
00 du| (P +20)(0, , -0,
dz dzl:-= 6(Az)* c
. b, ,(0,-0, )+20,20,-0, ,—0,, )+, ,(0,—-90,,,) .
6(Az)’ ‘
(P,., +20,)(0,,, —06,)
* 6(Az)° it (AT)

These approximations are also used to discretize depth in
Eq. (14). As in Ref. 12, O corresponds to leg( p) in Eq.
(AT7).
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